

Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint

Huiqi Liu, Xiang-Yang Li, Lan Zhang, Yaochen Xie, Zhenan Wu, Qian Dai, Ge Chen, Chunxiao Wan

University of Science and Technology of China (USTC), Tencent

Fingerprints Everywhere

INFOCOM 2018

Device Fingerprint: An Example

Tracking exists in the real world!

Are you unique? Yes! (You can be tracked!)

38.68 % of observed browsers are Chrome, as yours.
1.54 % of observed browsers are Chrome 62.0, as yours.
13.65 % of observed browsers run Mac, as yours.
0.46 % of observed browsers run Mac 10.13, as yours.
63.52 % of observed browsers have set "en"as their primary language, as yours.
2.05 % of observed browsers have UTC+8 as their timezone, as yours.

Data Tracking

Privacy Leakage

4/17/18

Device Fingerprints Techniques

• How are device fingerprints generated?

We exploit small deviations in mobile devices from hardware.

• Smartphones are equipped with a wide range of sensors.

We focus on motion sensors to generate fingerprints.

What is Fingerprinting Capacity Model?

- The capacity means to estimate how many devices can be distinguished by their manufacturing variances.
- It is a theoretical (mathematical) model to estimate the capacity of motion sensor fingerprint.

Fingerprinting Capacity

What is the capacity of device fingerprint? **The model, analysis and feature.**

Fingerprinting Factors

Which factor infects the fingerprint most? The user activity, device brand or device model.

De-fingerprinting Trade-off

How to anonymize sensor data while retaining utility?

Capacity Model

- We treat the fingerprinting problem as a classification problem.
 - For 'bin', we use the classification layer as the feature space.
 - For 'ball', each data piece of a device is treated as a ball.
 - For 'dimension', two sensors (accelerometer and gyroscope) can be treated as independent dimensions for device fingerprint.

• With users' permission, we collect motion sensor (accelerometer and gyroscope) data from **total 117 mobile phones** with 13 different brands.

INFOCOM 2018

The expectation of collided devices are increasing when the number of devices increases in our experiments.

The expectation=0.38 when the device number=117 This is consistent with our experiment result that for 117 devices given 20 seconds data of each devices the fingerprinting accuracy is 99%.

The expectation and the probability of indistinguishable devices.

For more than 200 devices, there is expected to be at least two collisions.

Fingerprinting Capacity

What is the capacity of device fingerprint? The model, analysis and feature.

Fingerprinting Factors

Which factor infects the device fingerprinting? The user activity, device brand or device model.

De-fingerprinting Trade-off

How to anonymize sensor data while retaining utility?

• Influence of Static vs. Dynamic

On flat surface	State-of-the-art	93 Devices	96%
	Our Work	97 Devices	97%
Arbitrary	State-of-the-art	117 Devices	77%
human motion	Our Work	117 Devices	91%
Mixed data	State-of-the-art	117 Devices	80%
	Our Work	117 Devices	92%
	Our Work	117 Devices with majority voting)99%

Fingerprinting Analysis Cont'd

- Sensors and axes
 - First, we conduct LSTM-based fingerprinting on each sensor's data separately.
 - Each sensor has three axes, we fingerprint three axes of each sensor separately.

Fingerprinting Analysis Cont'd

• Influence of brands, models and human

INFOCOM 2018

Fingerprinting Capacity

What is the capacity of device fingerprint? The model, analysis and feature.

Fingerprinting Factors

Which factor infects the fingerprint most? The user activity, device brand or device model.

De-fingerprinting Trade-off

How to **anonymize** sensor data while retaining **utility**?

Anonymization effect

• Fingerprinting model result

Data utility

- L2 distance
- Step counter result

De-fingerprinting (anonymization) Analysis

- We propose a theoretical model to understand the capacity of fingerprinting, it is a primary work and can be also used in other scenarios.
- We design a deep neural network based model to fingerprint mobile device sensors in real-life uses.
- We propose a novel generative model to anonymize sensor data while retaining good data utility, but it is still needed to deeply investigate that how vulnerable are the de-fingerprinting models against different types of fingerprinting attacks.

Datasets

- Our dataset is available, PLEASE feel free to DOWNLOAD it for fingerprinting research.
- Link: <u>https://drive.google.com/open?id=14eYWdB-</u> 77NMUCui4MZQPxpbjwZeNLi94

Introduction

For each motion sensor, i.e., accelerometer or gyroscope, three data sequences are simultaneously generated with with timestamps by three axes. So, in our experiments, we obtain 6 data sequences from two motion sensors. Each sequence can be a channel of the neural network input. However, they are generated with unstable time intervals, which depends on the schedule of the mobile operating system according to the real-time system load. Hence, we conduct piecewise cubic Hermite interpolation to obtain equally spaced data sequences as the inputs of neural networks. We divide continuous sensor data into 0.5~20-second segments as our dataset.

Data format

Recommanded method to load the dataset:

```
with gzip.open(filename, 'rb') as f:
    dataset = pickle.load(f)
    data = dataset['data']
    label = dataset['label']
```

Each file follows the format:

```
# dataset
{
    # data, shape (number of pieces, number of sample points, 3 axes, 2 sensors)
    'data': []
    # label, shape (number of pieces, )
    'label': []
```


nank you for listening~

• Huiqi Liu

- liuhuiqi@mail.ustc.edu.cn
- https://charlesliu7.github.io/