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Abstract—With the proliferation of mobile devices and various
sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) e-
quipped, richer services, e.g. location based services, are provided
to users. A series of methods have been proposed to protect
the users’ privacy, especially the trajectory privacy. Hardware
fingerprinting has been demonstrated to be a surprising and
effective source for identifying/authenticating devices. In this
work, we show that a few data samples collected from the motion
sensors are enough to uniquely identify the source mobile device,
i.e., the raw motion sensor data serves as a fingerprint of the
mobile device. Specifically, we first analytically understand the
fingerprinting capacity using features extracted from hardware
data. To capture the essential device feature automatically, we
design a multi-LSTM neural network to fingerprint mobile device
sensor in real-life uses, instead of using handcrafted features by
existing work. Using data collected over 6 months, for arbitrary
user movements, our fingerprinting model achieves 93% F-score
given one second data, while the state-of-the-art work achieves
79% F-score. Given ten seconds randomly sampled data, our
model can achieve 98.8% accuracy. We also propose a novel
generative model to modify the original sensor data and yield
anonymized data with little fingerprint information while retain
good data utility.

I. INTRODUCTION

To provide richer services, modern mobile devices are
equipped with various sensors, e.g., GPS, magnetometer, ac-
celerometers, gyroscopes. Sensor data is continuously gen-
erated and collected by service providers to support various
functions like recording running traces, step count and calorie
burning [1], as well as a variety of other novel uses, e.g.,
human activities understanding and searching [2], pedestrian
tracking [3] and eye gaze tracking [4], [5]. On the customer
information market [6], sensor data may also be put on
the shelves for further research. Despite the aforementioned
attractive features, rich personal information contained in the
sensor data could also pose a serious privacy threat. Tradi-
tional anonymization methods, e.g., hiding user ID, querying
location with encryption [7], perturbing voiceprint [8], [9]
cannot effectively mitigate the risk, because each sensor has
its unique physical characteristics, which can be captured as
a fingerprint in its produced data. Due to strong one-to-one
connection between devices and users, fingerprinting a device
often implies identifying a user.

Investigating device fingerprint is important for both attack
and defense. Some existing efforts have explored various
methods to fingerprint different kinds of sensors for tracking
users across applications [10], [11], [12]. These methods often
extract dozens of pre-defined features (e.g., mean, deviation,

and spectral centroid) from sensor data, and use various
supervised classifiers (e.g., SVM, Naive-Bayes, and Multiclass
Decision Tree) to fingerprint devices. Some countermeasures
are also proposed, such as calibration and obfuscation, to mit-
igate fingerprinting. Those methods, however, have limitations
in practical scenarios, and few of them achieve a systematic
understanding of mobile sensor fingerprint, which makes it
quite challenging to answer the following key questions.

First, what is the capacity of device fingerprint? Manufac-
turing imperfection makes each sensor have specific physical
characteristics. In order to leverage these characteristics as fin-
gerprint, we need to find out if the capacity of the characteristic
space is sufficient to distinguish a substantially large number
of devices. This cannot be answered by existing experiment
results based on only dozens of devices.

Second, which features and models are better to achieve
robust and efficient fingerprinting? How do the human activi-
ties affect device fingerprinting? Handcrafted features used by
existing method cannot capture the essential characteristics of
device fingerprint. Moreover, many of the pre-defined features,
e.g., mean deviation, and spectral entropy, are highly sensitive
to noises like human activity, which deteriorates the robustness
of fingerprint in complex real-life scenarios. For example,
using 70 features, the identification F-score of [10] is about
93% when the phone has only lightly movement, however the
F-score reduces to 78% when the phone moves in a moderate
speed. Besides, it takes us about 5 seconds to extract those 70
features from 1 second data. To achieve robust and efficient
fingerprinting, we need to extract intrinsic features of sensors
when they are swallowed by user’s substantial movements.

Third, how to retain utility while anonymizing sensor data?
Existing countermeasures include calibration and obfuscation.
Calibration can eliminate some of the errors that result from
manufacturing imperfections, but many sensors, like gyro-
scope, are hard to calibrate manually or require specialized
equipment. Obfuscation adds noises (e.g., uniform noise and
Laplace noise) to the sensor readings, which reduces the fin-
gerprinting accuracy, but also sacrifices some data utility, e.g.,
resulting in incorrect step count. It is challenging to design
a general countermeasure to achieve a good anonymization
results, as well as tradeoff between anonymization and utility
for different types of sensor data.

Methodology and Contributions: To answer aforemen-
tioned challenging questions, we deeply investigate the mobile
sensor fingerprint and make the following contributions.



Theoretical fingerprint capacity model: We are the first
to propose a theoretical model to quantify the capacity of
device fingerprint with multiple dimension features, and ana-
lyze/verify this model with a large collection of mobile device
data. Our model assumes that the collection of devices’ fin-
gerprinting features follow certain distributions such as normal
distribution, or uniform random distribution. We then derive
the theoretical fingerprinting capacity by studying the impact
of the number of features, the partition granularity of the
feature space, and the number of devices to be fingerprinted.

Deep neural network based fingerprinting model: To
capture the essential fingerprinting feature automatically, we
design a multi-LSTM neural network to fingerprint mobile
device sensors in real-life uses. This is a non-trivial task due to
two reasons. First, despite the great success deep learning has
achieved in computer vision, speech recognition and natural
language processing, little work has applied deep learning to
fingerprint sensors. It’s a challenge to design a proper network
structure to achieve robust fingerprinting. Second, the sensor
data is sampled unevenly and extremely noisy due to arbitrary
user activities. We need to carefully pre-process the raw data
and pack it properly as input of the neural network. Comparing
to previous work, our proposed multi-LSTM model achieves
better accuracy and much stronger robustness.

Generative model based anonymizing method: We pro-
pose a novel generative model to anonymize sensor data while
retain good data utility. Our method can be applied to various
sensor data for real-time data release.

With users’ permission, we collect motion data from 117
mobile phones, with 13 different brands devices, over more
than 6 months period, and then conduct extensive evaluations.
The experiments show consistent results with our capacity
model. For arbitrary user movements, given only 1 second
data, our fingerprinting model achieves 93% F-score, while
the state-of-the-art work achieves 79% F-score. With only
accelerometer, our model can still achieve 90.26% accuracy.
If there are only 20 devices, they can be fingerprinted with
99.2% accuracy. For different devices (13 brands, 65 models
in our experiment) of the same brand/model, the fingerprinting
accuracy is still above 93.5%. For different devices (12 devices
in our experiment) used by the same person, the accuracy
reduces to 89%, due to the influence of human behavior
fingerprints. Using 20s data, the top-1 accuracy is 99% and
top-2 accuracy is 99.94% by voting. Using our model, we can
extract fingerprint features in an unsupervised manner. It only
takes 0.04ms to fingerprint 1 second data. Our anonymizing
model can reduce the fingerprinting accuracy to 5% while
retaining good utility with only 0.9 ms delay.

The rest of this paper is organized as follows. We review
related work in Section II, and describe our methodology in
Section III. In Section IV, we theoretically analyze the capaci-
ty of device fingerprint. Section V presents our neural network
model for robust fingerprinting, and Section VI presents our
generative model based anonymization method. Section VII
reports experimental results, and Section VIII concludes the
work with future work.

II. BACKGROUND AND RELATED WORK

Existing efforts mainly investigated two categories of device
fingerprints, software fingerprints and hardware fingerprints.
Hardware fingerprints are more persistent but more challeng-
ing to characterize.

A. Software Fingerprinting

Researchers have characterized different installed softwares
as fingerprints to distinguish different devices, for example,
the installed device drivers [13], the performance benchmarks
of JavaScript engines [14], the characteristics of 802.11 traffic
[15], and the timing analysis of 802.11 probe request frames
[16]. A common set of approaches collect information via
browsers to generate a device’s software fingerprint, such as
the HTML5 canvas elements [17] and user browsing history
[18]. Due to the dynamic nature of installed softwares, the
software-based fingerprints usually change with time.

B. Hardware Fingerprinting

Different hardware components of mobile devices have been
investigated to generate fingerprints. Wireless transmitters can
be fingerprinted by radio frequency (RF)[19]. Network devices
have distinguishing and stable clock skews [20], [21], which
can be used for fingerprinting [22]. The source network inter-
face card (NIC) can be identified using minute imperfections
in transmitter hardware [23].

Sensor Fingerprinting. Hardware characteristics can be used
to identify devices, and then users. These characteristic-
s are caused by manufacturing differences or manufactur-
ing imperfections. In theory, most sensors have some sort
of measurable bias. For example, accelerometer, gyroscope,
magnetometer and ambient light sensors generate data with
linear bias, and GPS sensor has clock skew imperfection.
Stisen et al. [24] investigate mobile sensing heterogeneities
for HAR (human activity recognition). Zhou et al. [25] extract
features from audio pieces and conducted fingerprinting by
feature matching. Das et al. [26] extract rich acoustic features
and applied traditional classification algorithms to fingerprint.
Accessing to the microphones and speakers require obvious
user permission, while motion sensors (e.g., accelerometer
and gyroscope) can be accessed without requiring any user
permission, which raises potential threats to privacy. Dey et
al. [12] use feature extraction and Bagged Decision Trees to
generate accelerometer fingerprint. Bojinov et al. [11] have
analyzed common mobile device sensors along with their
imperfections. Das et al. [10] use 70 temporal and spectral
features of gyroscopes and accelerometers to track mobile
users through web browsers. They also propose calibration
and obfuscation as two straightforward defenses. However, the
calibration requires specialized equipments, while obfuscation
reduces the utility of the motion sensors.

As a summary, existing works have tried around 100 hand-
crafted features working along with different classifiers to
fingerprint sensors, and evaluated the accuracy with dozens
of devices.



III. METHODOLOGY AND PROBLEM SCOPE

In this work, towards a systematic deep understanding
of mobile sensor fingerprint, we thoroughly investigate the
following challenging issues.
• Capacity of device fingerprint. To theoretically analyze

the fingerprint capacity, we propose a multidimensional
Balls-into-Bins model, taking the devices as balls and the
partitions of the multidimensional hardware feature space
as bins. Leveraging the statistic results of our 117 diverse
mobile devices dataset, our theoretical model shows the
fingerprint capacity as the devices number and sensor
category grow. (See Section IV.)

• Robust fingerprinting deep neural network. To achieve
robust device fingerprint in practical uses, where the
subtle hardware characteristics are swallowed by envi-
ronment noises and arbitrary user activities, we design a
series of deep neural networks to automatically extract
essential fingerprinting features which outperforms ex-
isting handcrafted feature based methods. Moreover, we
reveal several insights about influence factors of device
fingerprinting. (See Section V and Section VII.)

• Defense model retaining utility. To anonymize sensor
data as well as retain the data utility, we propose a novel
generative model consisting of an encoder and a decoder,
which makes minimal modifications to the sensor data
to remove fingerprint information in a real-time manner.
(See Section VI.)

Our theoretical capacity model can be adopted for ana-
lyzing fingerprints of diverse mobile devices. The proposed
fingerprinting and anonymizing models can be applied for
various sensor data in time series form. In our data-driven
analysis (in Section V and Section VII), we take motion
sensors (namely, accelerator and gyroscope) as examples.
Because motion sensors can be accessed without requiring
any obvious user permission, which raise high privacy threats
as well as great challenges for fingerprinting due to the rich
user activity information in the sensor data. Different from the
previous work, which places devices on a flat surface (i.e., a
static scenario) or holds in hand with slightly movement, we
consider more practical scenarios, where users can perform
arbitrary activities, e.g., browsing, walking and running.

IV. UNDERSTANDING CAPACITY OF FINGERPRINT

In this section, we propose a theoretical capacity model to
understand the capability of hardware fingerprinting and con-
duct rigorous analysis considering multidimensional features.

A. Brief Introduction to Onboard Sensors

Substantial efforts have been devoted to modeling MEMS-
based motion sensor noise. For the most common noises,
Gabrielson [27] models the mechanical thermal noise as
function of absolute temperature and the damping coefficient.
Djuric [28] derives more complex noise models combining
mechanical thermal noise with electrical noise sources. These
noises are the characteristics (like damping coefficient) of the
motion sensors. They are slightly different from each other due
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Fig. 1: The probability Pr(Colm1 ) vs device # m and feature space
size n when the feature is uniformly distributed.
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Fig. 2: Expected # of collisions E(C) vs device # m and feature
space size n when the feature is uniformly distributed.

to the heterogeneities of the manufacturing procedure, thus,
forming fingerprints for sensors.

B. Capacity Model of Fingerprinting

We propose a multidimensional Balls-into-Bins model to
analyze the capacity of device fingerprint. Here we take m
devices as balls and n partitions of the hardware feature space
as bins, and throw m balls into n bins. Intuitively, when a
ball falls into a bin, it means this device possesses a specific
feature. When more than one balls fall into the same bin, a
collision indicates these devices have the same feature, that is
they cannot be distinguished by this type of feature.

1) One-dimension Feature Space: Let’s start with one-
dimension feature space. The feature of each device’s sensor is
independent of that of other devices’ sensors. Sensor features
are continuously distributed, and we discretize the feature
space into n partitions.
Uniformly distributed feature. First, we assume sensor fea-
tures follow a uniform distribution. In this case, the model
is that each ball is independently thrown into a random bin
following the uniform distribution. So the probability that a
ball falls into any bin is 1/n. Let Colji denote the event that
there exist collisions for the balls whose indices are within the
range [i, j]. E(C) denotes the expectation number of collisions.
Note that we count collisions over distinct pairs, that is, if three
balls fall into one bin, three collisions are counted. The proba-
bility that there exist collisions is (proof omitted due to space
limitation) Pr(Colm1 ) = 1− Pr(¬Colm1 ) = 1− (n−1)!

nm−1(n−m)! .

The expected number of collisions is E(C) = m(m−1)
2n .

We now analyze how the device number m and feature
space size n change the collision probability Pr(Colm1 ) and
collision number E(C). Obviously, increasing device number
m brings larger collision probability (Fig. 1a) and more
collision devices (Fig. 2a), while increasing feature space size
n reduces collision probability (Fig. 1b) and collision number
(Fig. 2b). Given one-dimension feature space with limited size,
e.g., 100 bins, even a small set of devices, e.g., 20 devices,
there is a more than 80% collision probability (Fig. 1).
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Fig. 3: The collision probability Pr(Colm1 ) and the number of
expected collision E(C) changes against m and n when the feature
is a binomial distribution B(n− 1, 1/2).
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Fig. 4: The probability Pr(Im1 ) versus m, n and k when features
are uniformly distributed (here we suppose each dimension has the
same number of bins).
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Fig. 5: The expected number of indistinguishable balls E(I) versus
m, n and k when the feature space is 2-dimension (here we suppose
each dimension has the same number of bins).

Normally distributed feature. Second, we consider sensor
features follow a normal distribution. To describe the feature
distribution over discrete bins, we use a discrete distribu-
tion, binomial distribution, to approximate normal distribu-
tion. For m balls and n bins, each time a ball is indepen-
dently thrown into a bin follow the binomial distribution
B(n − 1, p), which means that a ball falls into the x-th
bin with probability

(
n−1
x−1
)
px−1(1 − p)n−x. In this case,

the probability that there exist collisions is Pr(Colm1 ) =
1 −

∑
{r1,r2,···,rm}
⊂{0,1,···,n−1}

∏m
i=1

(
n−1
ri

)
pri(1 − p)n−1−ri , where ri

is the index of the bin (0 ≤ ri ≤ n − 1) which the
i-th ball falls into. The expected number of collisions is
E(C) = 1

2m(m− 1)
∑n−1

i=0

((
n−1
i

)
pi(1− p)n−1−i

)2
.

Fig 3a and Fig. 3b plot the collision probability and expect-
ed collision number. Similar to the uniform distribution case,
larger m and smaller n increase the collision significantly. Dif-
ferently, in the normal distribution case, the collision happens
with a much higher probability, which means it is much more
difficult to distinguish devices in this case.

2) Multi-dimension Feature Space: In practice, multiple
features can be utilized to distinguish mobile devices. Now we
consider the multi-dimension Balls-into-Bins problem. Here
we suppose each dimension is independent to give the upper
bound of fingerprint capacity. In practice, different sensors’
noise, e.g, gyroscope and accelerometer, can be considered

as independent1. Two indistinguishable balls must collide in
all dimensions, i.e. in the same high-dimensional grid. Let Iji
denote the k-dimension collision event that there exist indis-
tinguishable balls in the k-dimension feature space. Suppose
there are k-dimension bins with bin sizes {n1, n2, · · · , nk}.
Uniform distributed feature. In uniform distribution case,
the probability that indistinguishable balls exist is Pr(Imi ) =

1 − Pr(¬Imi ) = 1 −
(
n
m

)
m! ∗

(
1∏k

i=1 ni

)m
, where n =∏k

i=1 ni. The expected number of indistinguishable balls is
E(I) = m(m−1)

2
∏k

i=1 ni
.

Fig. 4 plots the probability of k-dimension collision. Com-
pared to the one-dimension case, two independent feature
dimensions, e.g., two independent sensors such as accelerom-
eter and gyroscope, significantly reduce the indistinguishable
probability. With limited bin size on each dimension, e.g., 100,
given 20 devices, the indistinguishable probability drops to
less than 5% (compared to 80% in the one-dimension case).
50 bins on each dimension can reduce the expected collision
number of 50 devices to lower than 1 (Fig. 5a).
Normally distributed feature. Similarly, we use binomial
distribution B(n−1, p) as the approximation of normal distri-
bution, and the probability for a ball falls into the k-th bin in
the i-th dimension is

(
ni−1
x−1

)
px−1i (1−pi)ni−x, where pi is the

binomial distribution parameter for the i-th dimension. So the
expected number of indistinguishable balls is E(I) = 1

2m(m−
1)
∏k

i=1

∑ni−1
j=0

((
ni−1

j

)
pji (1− pi)ni−1−j

)2
. Fig. 5b plots

the expected number of indistinguishable devices for 2-
dimension feature space. Compared to the uniform distribu-
tion case, the fingerprint capacity decreases, while increasing
feature dimensionality still significantly enlarges the capacity.

V. ROBUST DEVICE FINGERPRINTING

In this section, we explore features for robust device finger-
printing. Existing works have proposed dozens of handcrafted
features. The state-of-the-art work [10] uses 70 temporal and
spectral features of sensor data as device fingerprints. Most of
these features are highly sensitive to large noises like human
activities. In practical sensor data, subtle hardware fingerprints
are usually swallowed by substantial movement signals, e.g.,
walking and running. To investigate the impact of activities on
fingerprinting, we implement the proposed method in [10], and
test the accuracy and efficiency on our data collected from 117
different devices. Our sensor data are collected in both static
scenario, where the phone is placed flat on a surface, and
highly dynamic scenario, where the user holds the phone and
performs arbitrary activities such as walking and gaming. It
takes us about 5 seconds to extract 70 features from 1 second
data. As shown in Fig. 6, in the static scenario, using a set of
handcrafted features can achieve 93% F-score for 97 devices
given 1 second data2. When it comes to the highly dynamic

1Note that three axes of one sensor are physically separated, but the feature
dependency among them is till unexplored.

2As reported in [10], it can achieve 96% F-score given 5 seconds data of
96 devices. With our dataset, [10] achieves 97.5% given 5 seconds data for
97 devices, which is consistent with the reported result.
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scenario, the F-score reduces significantly to 77% for 117
devices. And the F-score declines significantly as the device
number increases.

A. Neural Network based Fingerprinting

Our results reveal that, it is quite challenging to achieve
robust device fingerprinting using real-life sensor data. In order
to capture the inherent hardware features automatically, we
propose to use deep neural network for fingerprints extraction.
Facing various challenges, we explore a variety of deep neural
networks and design a Long Short Term Memory network
(LSTM) model which is suitable for sensor feature extraction.
Raw data are carefully processed before being fed into the
model. Our proposed model achieves high accuracy in highly
dynamic scenarios.

1) Multi-LSTM fingerprinting model.: LSTM network, as
a variant of RNN introduced by Hochreiter and Schmidhuber
[29], is capable of learning long-term dependencies like the
fingerprinting information in sensor data. We design a Multi-
LSTM structure as shown in Fig. 8. More specifically, the
input are w × k sequences, where w is the data length (e.g.,
w = 100 when input 1-second data with 100Hz sample rate),
k is the channel number (e.g., k = 3 for data from three
axes of the accelerometer). w is correlated to the fingerprinting
delay in a realtime system. k is the dimension number in our
theoretical capacity model in Section IV, if k input channels
are independent. Through one hidden layer, data are fed into
a multi-LSTM structure in order to extract persistent features.
Then it outputs a size h vector as the input of the second
hidden layer, which is then connected with the soft-max layer.

As a comparison, we also design and build a CNN (Con-
ventional Neural Network) model taking raw sensor data as
input, a CNN model taking the data processed by Short-Time
Fourier Transform (STFT) as input. Based on our extensive
evaluation, we find that the multi-LSTM model significantly
outperforms the other two models.
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Unsupervised fingerprinting. Based on our LSTM model,
unsupervised fingerprinting can also be conducted by treating
the penultimate layer (the size h vector) of our network as
a device’s fingerprint feature. Given unlabelled data from K
devices, we can extract the fingerprint feature of each piece
of data, and apply unsupervised learning, e.g., k-means clus-
tering, on all data pieces to cluster data from the same device
together. Furthermore, given only a few labelled data for each
device, we can identify a large-scale of unlabelled data, which
enables more stronger and more practical unsupervised attack
without requiring many labelled training data.

2) Data Pre-processing: For each motion sensor, i.e., ac-
celerometer or gyroscope, three data sequences are simulta-
neously generated with with timestamps by three axes. So,
in our experiments, we obtain 6 data sequences from two
motion sensors. Each sequence can be a channel of the neural
network input. However, they are generated with unstable
time intervals, which depends on the schedule of the mobile
operating system according to the real-time system load.
Hence, we conduct piece-wise cubic Hermite interpolation to
obtain equally spaced data sequences as the inputs of neural
networks. We also divide the continuous sensor data into small
sequences of the same length w.

3) Evaluation Metric and Model Comparison: To evaluate
the effectiveness of fingerprinting models, we use two metrics:
accuracy and F-score. As a multi-class classification task, the
model accuracy is defined as the proportion of correction
predictions, F-score gives a tradeoff between precision and
recall, which is defined as F-score = 2∗Presicion∗Recall

Precison+Recall .
Using our large dataset collected from 117 diverse devices

in real-life scenarios, we conduct comprehensive evaluation
on our neural networks as well as the state-of-the-art methods
[10]. We report detailed evaluation results and analysis in
Section VII. As a summary, Fig. 7 shows the fingerprinting
accuracy of our model compared with models in [10] for
highly dynamic scenarios given different input data lengths
w. It reveals that handcraft features based models (SVM and
Random Forest) can only achieve 74% ∼ 87% F-score due to
the large noise caused by human activities. Our multi-LSTM
approach achieves 93% F-score with only 1 second sensor
data.

4) Majority Voting Strategy: To further increase the ac-
curacy, we apply the Majority Voting Strategy: suppose a
fingerprinting model for t-second input data has been trained
to achieve an accuracy p. Then theoretically, given a piece of
s× t-second data, where s ∈ N and s > 1, by majority voting



we can achieve the following accuracy:

Accuracy(s) =


∑s

i=m Ci
sp

i(1− p)s−i − 1
2C

m
s p

m(1− p)s−m,
if s is even and m = s/2∑s

i=m+1 C
i
sp

i(1− p)s−i,
if s is odd and m = (s− 1)/2

Using our dataset we conduct Monte Carlo simulation
to simulate the performance of majority voting strategy on
real data3. Fig. 9 shows the theoretical and real data based
Monte Carlo simulation results. With majority voting, given
10 seconds data, the theoretical accuracy can achieve 99.9%,
and the simulation results can exceed 99%. Then we eval-
uate the voting strategy for two different real-life scenarios:
(1)continuous voting: an attacker obtains a piece of continuous
data of a device and divided them into small pieces for
voting; (2)uncontinuous voting: an attacker obtains pieces of
uncontinuous data collected at different time, and uses them
for voting. The uncontinuous voting attack can compromise
privacy-preserving methods which release scattered data pieces
to protect user privacy. As shown in Fig. 9 and Fig. 10, the
continuous voting can achieve 96% top-1 accuracy and 97.4%
top-2 accuracy given 10 seconds data, while the uncontinuous
voting can achieve 98.8% top-1 accuracy and 99.7% top-2
accuracy given 10 pieces of 1 second data.

VI. ANONYMIZING SENSOR DATA

Facing fingerprinting attack with high accuracy, there is
an urgent demand for effective countermeasures to protect
user privacy. To anonymize sensor data, we propose a novel
generative model, which eliminates the fingerprints effectively
while minimizing data utility loss.

A. Anonymization Model

The model is composed of a generator and a discrimi-
nator. The basic idea is to train a generator, which takes
the original data as input and outputs de-fingerprinted data
to fool a well-trained discriminator, e.g., our multi-LSTM
fingerprinting model. That is, the discriminator takes the de-
fingerprinted data as input and outputs incorrect labels. The
goal is to maximize the randomness of the discriminator’s
output labels with minimal data modification. In this way, our
model anonymizes the input data while retains the data utility.
Our model structure is demonstrated in Fig. 11. The generator
is an auto-encoder containing two convolutional layers. For
the discriminator, we use our multi-LSTM model since it
outperforms other fingerprinting models.

When training the generator, instead of using correct labels,
we match each piece of sensor data with a random label to
force the generator to modify the original data to anonymized
data. Simultaneously, the generator also tries to minimize

3First, we use 1-second pieces of training data to train our multi-LSTM
model. Then, during each step in the simulation, we randomly select a label
category of test data and randomly choose a piece of s-second data from this
category. Next, we split the data into s 1-second pieces, and use the trained
model to predict the label of each piece. Using the s labels for majority voting,
we obtain the final predicted label for this s-second data.

Sample from 
data stream

Denoised
sample

Convolutional Layer

Encoding Decoding

Stack-LSTM

Soft-max
Hidden Layer

Generator Discriminator

Output stream

Fig. 11: The network structure of data anonymization model.

differences between anonymized data and original data. We
define the loss function as lossg = cross entropy(y, y′) +
max{0, ‖x− x′‖L2 − ε}, where y denotes the random labels
we match to the data, y′ denotes the outputs of discriminator
during training, x and x′ denote the original data and de-
fingerprinted data, and ε denotes an acceptable error of the
generator. By reducing the loss during training, we can control
similarity level between original and anonymized data, as well
as the anonymization level. Our model takes less than 1 ms
to anonymize 1 second data. So it can serve as a new feature
in the future mobile operating systems.

B. Evaluation Metrics

Anonymization Effect. It is hard to tell whether a counter-
measure can defend against all fingerprinting methods. A fair
metric is to use the state-of-the-art fingerprinting methods [10]
and our multi-LSTM based fingerprinting as attack models,
and measure the fingerprinting accuracy of these models on
the anonymized data. The lower the accuracy, the better the
anonymization effect.
Utility. It is essential that the anonymized data should not
scarify the data utility. We measure data utility from two
perspectives: (1) Modification distance: We use the L2 distance
between the original data sequence and anonymized data
sequence to measure the extent of the modification, which
should be as small as possible. (2) Data usage: We use
the output of motion sensor based applications to test the
anonymized data, e.g., we use the output of a pedometer
application to check if the step count of the anonymized data
is correct.

VII. DATA-DRIVEN ANALYSIS

To deeply investigate, we collect a large highly diverse real-
life dataset over 6 months, and conduct a series of data analysis
and evaluation based on the dataset. Based on extensive exper-
imental results, we further explore the multi-dimension device
features and the fingerprint capacity, and reveal more insights
about different influence factors (e.g., human and hardware
model) on fingerprinting. We also prove the effectiveness and
efficiency of our fingerprinting and anonymizing models.
A. Data Collection

With users’ permission, we collect motion sensor (ac-
celerometer and gyroscope) data from total 117 mobile phones
with 13 different brands (Tab. I) when the users performed
arbitrary movements. The sensor data is sampled at 60Hz ∼
200Hz, and each data record is annotated with the device
id and user id. We divide continuous sensor data (more than
150 hours data) into 1 ∼ 20-second segments as our dataset.
For training and testing, we randomly split our dataset into
two parts: 80% for training and the other 20% for testing. To
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Fig. 12: Fingerprinting capacity in two dimension

prevent bias of evaluation results caused training/testing data
selection, for every experiment we repeat random training data
selection ten times and report the average results.

Brand Proportion Brand Proportion
Apple iPhone 30.77% Nexus 3.42%

Apple iPad 16.24% Vivo 2.56%
Xiaomi 9.40% Nubia 1.71%
Huawei 12.82% LeShi 1.71%

Samsung 7.69% LG 0.85%
OnePlus 5.98% Lenovo 0.85%

MeiZu 5.13% OPPO 0.85%

TABLE I: Details of the device models.

B. Explore Multi-dimension Features
We firstly explore the multi-dimension feature space of the

device fingerprint, since feature dimensionality significantly
affects the capacity (see Section IV-B).
Two sensors: accelerometer and gyroscope. Here, two sen-
sors (accelerometer and gyroscope) can be treated as inde-
pendent dimensions for device fingerprint. First, we conduct
LSTM-based fingerprinting on each sensor’s data separately.
As shown in Tab. II, given only 1 second data, to identify 117
devices we can achieve 90.26% accuracy for accelerometer
and 68.62% accuracy for gyroscope. With majority voting of
20 seconds data, the accuracy can be improved to 93.99%
and 80.03% respectively. By fusing predict results of two sen-
sors using confidence boosting strategy4, our model achieves
91.41% accuracy, which is close to the accuracy of fusing two
sensors’ data together as input into one network.

Accuracy Majority voting (20s)
Accelerometer 90.26% 93.99%
Gyroscope 68.62% 80.03%
Fusing results of 2 sensors 91.41%

TABLE II: Fingerprinting accuracy for 117 devices of a single
sensor and fusing 2 sensors given 1 second data.

Six axes of accelerometer and gyroscope. Each sensor has
three axes, which are supposed to be independent because
they are physically separated in the MEMS-based model.
We fingerprint three axes of each sensor separately. Given 1
second data of one axis of accelerometer and gyroscope, our
model can respectively achieve 72% and 53% accuracy for
117 devices (Tab. III). Fusing the results of 6 axes together
by confidence boosting strategy produces 87.01% accuracy.

4The confidence boosting strategy works as follows. For a prediction, a
single predictor has different confidence scores for each label, which is the
last layer’s values of the network. We add up the confidence scores of multiple
predictors and take the maximum of them as the final predicted label.

Senor Axes Accuracy

Accelerometer
ax 72.56%
ay 72.96%
az 43.57%

Gyroscope
gx 52.92%
gy 54.02%
gz 53.85%

Fusing results of 6 axes 87.01%

TABLE III: Fingerprinting accuracy for 117 devices of a single axis
and fusing 6 axes given 1 second data.

Note that, though different sensors and different axes are
physically independent, we cannot claim their fingerprint
data are absolutely independent, because there may be some
correlation among their fingerprints due to the environment
influence like temperature and humidity. This may explain that,
prediction based on fused data achieves better accuracy (92%)
than fusing prediction results of different sensors/axes.

C. Fingerprint Capacity Analysis
After exploring multi-dimension features, we are ready to

map the Balls-into-Bins model with the fingerprinting scenari-
o, and to estimate the capacity bound based on the investiga-
tion of real-life data. In our model, the ”balls” are devices.
”bins” are partitions of a feature space with distinguishable
resolution. Since our experiment shows 92% accuracy for
117 devices, we can claim with confidence that there are
at least 117 distinguishable partitions in the feature space.
For the different feature dimensions, they are required to be
independent to each other. Based on the analysis in Section
VII-B, here we model feature dimensions as two sensors,
which can be assumed independent. This two dimension model
with 117 ”bins” for each dimension gives the lower bound of
fingerprint capacity. For the ball’s distribution probability on
each dimension, we use the frequency that devices are classi-
fied into one ”bin” (i.e., label). Fig. 12a and Fig. 12b illustrate
the distribution probability of 117 bins for accelerometer and
gyroscope respectively. Here, we assume all balls have the
same distribution in each dimension. Now we have obtained
all parameters of our capacity model based on real data. Fig.
12 shows the estimated device fingerprint capacity. For less
than 90 devices, the expected collision is less than 1, and the
probability of collision is less than 50%. For more than 110
devices, there is expected to be at least one collision. This
is consistent with our experiment result that for 117 devices
given 20 seconds data of each devices the top-2 fingerprinting
accuracy is 98%.



Device placement scenario Method # of device Metrics Remarks
On flat surface [10] 93 96% F-score [10]’s result
On flat surface Our LSTM model 97 97% Accuracy, 97% F-score 1 second, Our dataset

Arbitrary human motion [10] 117 77% Accuracy, 78% F-score [10]’s method and our 1 second dataset
Our LSTM model 117 91% Accuracy, 91% F-score 1 second, Our dataset

Mixed data

[10] 117 80% Accuracy, 79% F-score [10]’s method and our 1 second dataset
Our LSTM model 117 92% Accuracy, 93% F-score 1 second, Our dataset

LSTM model
with continuous voting

117 96% Accuracy (top-1), 97.4% Accuracy (top-2) 10 seconds, Our dataset
117 96.5% Accuracy (top-1), 98% Accuracy (top-2) 20 seconds, Our dataset

LSTM model
with un-continuous voting

117 98.8% Accuracy (top-1), 99.7% Accuracy (top-2) 10 1-second pieces, Our dataset
117 99% Accuracy (top-1), 99.9% Accuracy (top-2) 20 1-second pieces, Our dataset

TABLE IV: Results in different scenarios and comparison with the state-of-the-art work [10].

D. Fingerprinting Accuracy in Different Scenarios
Now we conduct extensive experiments using our dataset

to evaluate the performance of our LSTM model in different
scenarios and compare it with the state-of-the-art work [10].

Static vs. Dynamic. First, we consider the static scenario
versus dynamic scenario. As summarized in Tab. IV, in the
static scenario, our model and [10] both achieve a high
accuracy, which are 97% and 96% F-score respectively. But
when it comes to the highly dynamic scenario, given 1 second
data, the F-score of [10] drops to 78% while the F-score of our
model is 91%. Mixing the static and dynamic data together to
recover the real-life scenario, our model achieves 93%, while
F-score of [10] is only 79%. The results show that our model
is more robust to large noises like human activity.

Majority voting. As presented in Tab. IV, leveraging contin-
uous majority voting, given 10 seconds data, we can achieve
96% top-1 accuracy and 97.4% top-2 accuracy. For our uncon-
tinuous majority voting, given 10 pieces of 1 second data, we
can achieve 98.8% top-1 accuracy and 99.7% top-2 accuracy.
Fig. 9 and Fig. 10 plot the voting accuracy increasing with
the length of data. Given 20 pieces of 1 second data, we can
achieve 99.9% top-2 accuracy.

Influence of brands and models. Here, we are interested
in the question ”is it more difficult to distinguish devices of
the same brand/model? ” The devices in our experiment have
13 brands and 65 models. As reported in Tab. V, the device
distinguishability is slightly different across different brands
or models. For the same brand or model, devices can still be
identified with a high accuracy, e.g., 93% for 36 iPhones, 93%
for 12 iPhone6 and 92% for 9 iPhone7.

Influence of human. The collected data carry both hardware
information and human behavior information. To answer how
the human behavior fingerprints affect device fingerprinting,
we asked one volunteer to use 12 different devices freely.
As presented in Tab. V, in this case, our model can identify
the 12 devices with 89% accuracy, which is slightly worse
than the overall accuracy, while using random forest in [10]
achieves 71% accuracy. So, the human factor indeed increases
the difficulty of motion sensor based device fingerprinting.
How to separate the human fingerprints and device fingerprints
remains a challenging question.

Influence of device number and training data size. Given
the fingerprint capacity, more devices imply more collisions
in the feature space. Our evaluation results show that as the
device number increases from 20 to 117, the accuracy declines

Granularity device # user # Accuracy Remarks
All devices,
all users

117 77 92% Whole dataset

One brand,
different devices

55 36 94% Apple products
36 29 93% iPhone
19 17 96% iPad
11 10 94% Xiaomi
15 14 91% Huawei

One model, different
devices

12 10 93% iPhone6
9 8 92% iPhone7
8 7 95% iPad Air2

One user,
different devices

12 1 89% Our LSTM model
12 1 71% Random Forest

TABLE V: Fingerprinting accuracy in different granularity given 1
second data.

from 99.20% to 92%. Obviously, more training data samples
produce stronger fingerprinting models.
Unsupervised fingerprinting. Furthermore, we treat the
penultimate layer of our LSTM network as a device fingerprint
feature, and apply k-means clustering (k = 117) on features
of 100,730 1 second data pieces of 117 devices. The Adjust
Rand Index and the Adjust Mutual Information between the
clustering result and the ground truth are 81% and 88%
respectively. This result also proves the effectiveness of our
fingerprinting model, more importantly, presents the chance
to conduct unsupervised fingerprinting using the extracted
features.
E. Defenses Performance

We evaluate our anonymization model, and compare it with
methods in [10], which directly add noises to the data. Since
in dynamic scenario the sensor data has large variance, adding
Laplace noise and white noise according to the methods in [10]
will cause large L2 distance. So, here we compare the uniform
noise in [10] with our model. We use the fingerprinting
accuracy of our LSTM model, SVM and Random Forest
models in [10] as the anonymization effect metric, and L2

distance and step count results as the data usage metric. There
is a tradeoff between anonymization effect and data utility.

Tab. VI presents step count results5 on sensor data
anonymized by our model and uniform noise. The results
in Tab. VI and Fig. 14 show that when L2 distance < 6,
our model reduces the fingerprinting accuracy to 19% and
cause no error to the step count; while uniform noise causes
0.51 deviation and only reduces the fingerprinting accuracy
to 32%. When L2 distance < 30, our model causes less than
0.89 deviation and reduces the accuracy to 5%; while uniform
noise causes 1.78 deviations and reduces the accuracy to 10%.
Thus, our model achieves both better anonymization effect and

5In our experiment, each of volunteers takes 30 steps with the mobile
phones and repeats it for 20 times.



Our
model

L2(≈) 0 6 9 15 20 30
Mean 30 30 29.97 29.97 29.68 29.38
Stdev 0 0 0.21 0.34 0.63 0.89

Uniform
noise

L2(≈) 0 6 12 18 24 30
Mean 30 29.86 29.52 28.77 29.02 29.27
Stdev 0 0.51 0.76 1.31 1.62 1.78

TABLE VI: Step count results of anonymized data by our model
and existing method [10].

data utility. Fig. 14 confirms that our model works effectively
against different fingerprinting models.

F. Efficiency
We run our experiments on a server with 12 Intel Core i7-

5930K 3.50GHz CPUs and 1 Titan X (Pascal) GPU. It takes
us around 2 hours to train the LSTM model. For the testing, it
takes 0.04 ms and around 0.9 ms to fingerprint and anonymize
the fingerprint respectively for 1 second sensor data. As a
comparison, the average time of extracting the 70 features
proposed in [10] from 1 second data is 5.16s. The results
show that it is very costly to extract a large set of temporal
and spectral features from the data. Instead, our models can
provide both realtime fingerprinting and anonymizing.

VIII. CONCLUSION

The raw sensor data, containing device-dependent noises,
has been demonstrated to be an effective fingerprint of mobile
devices. In this work, we showed that a few (less than 100)
data samples collected from the motion sensors are enough
to uniquely identify the source mobile device. We designed a
multi-LSTM neural network framework to fingerprint mobile
device sensor in real-life uses. Our system achieves 93%
fingerprinting F-score given only one second data even users
are doing arbitrary movement, and the accuracy improves to
98.8% when we have 10 seconds data. We then proposed
a novel generative model to yield anonymized data with
little fingerprint information while retain good data utility.
Several interesting directions are left for future investigation:
integrating other sensor data to define better device/human
ID for identifying users, improving accuracy and reducing
requested training for better forensics usage.
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