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Privacy leak is real!
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Tip of the iceberg!



Privacy inference

The attacker can use background knowledge to infer
users’ sensitive information. E.g.

– Higher education => higher salary
– Colleagues=> same company
– Common hobbies => friends
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Background knowledge
(Prior knowledge)



Previous privacy attacks
• Relational data

– Data publishing
– Statistical query

• Graph data
– De-anonymization
– Privacy learning

• Other data forms
– Spatio-temporal data, genome data, multimedia data
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Our goal
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To model the privacy inference attack and 
reveal its essence from a general view

(differs from most of previous work)



Challenges
• Privacy is difficult to define and privacy leakage is 

hard to quantify

• It is challenging to apply one single model to various
data forms 

• Privacy inference is hard to model because there are a 
large diversity of attack techniques 
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Overview of the solution

Privacy Inference on Knowledge Graphs: Hardness and Approximation 9

1
• Model the attacker’s knowledge by a 

knowledge graph

2
• Abstract four base cases of privacy 

inference 

3
• Formulate privacy inference and prove

the hardness

4
• Design approximation algorithm which

reflects network evolution



Knowledge graph

A heterogeneous graph of all kinds of entities and their 
relations related to a specific domain or topic 

– E.g. Freebase, Wikidata, Dbpedia, YAGO, NELL, Google’s 
Knowledge Graph, Facebook’s Entities Graph



Our knowledge graph
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Each edge is associated with a probability, indicating the attacker’s confidence



Privacy inference base cases

• Triangle inference
– A common neighbor

For Fig (a), we have
Pr 𝑒$%$& = Pr 𝑒$%( Pr 𝑒$&( Pr	(𝑒$%$&|𝑒$%(, 𝑒$&()
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Inference probability



Multiple common neighbors

• Multiple base cases are combined altogether if they have
multiple common neighbors 

• Inference probabilityPr	(𝑒-.|𝑁-.) is computed by aggregation
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Assumption about triangle 
inference

• To infer an unknown edge 𝑒-.:
– If s, t have common neighbor(s), then 𝑒-. exists with a 

probability (the inference probability); 
– If there is no path connecting s, t, then 𝑒-. must not exists; 
– If s, t do not have a common neighbor but there is a path 

connecting them, the status of 𝑒-. is TBD.



Privacy inference
• Is the problem of computing 𝑝(𝑒-.), the probability

that an unknown edge 𝑒-. exists.



#P-hardness
The #P-hard “s-t reliability” problem can be reduced to our
problem.
Please see detailed proof in our paper.
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Algorithm 
• A iterative algorithm based on Monte Carlo 

simulation

Generate conjecture graph G0 from
knowledge graph G.

Flip a coin for each candidate pair to
decide whether to add an edge.

Stop if est is inferred or no more edges
can be added; redo Step 2 otherwise.



An example
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Privacy Inference on Knowledge Graphs: Hardness and Approximation 19



Simulations 
• Datasets 

– Relational: Adult
– Social network: Pokec

• Knowledge graph construction
– Edge probabilities are synthetic: uniform, Gaussian

• Inference probabilities are set by statistics

• Metric
– confidence gain

Δ𝑝 𝑒-. = 𝐼(𝑒-.)(𝑝4 𝑒-. − 𝑝6(𝑒-.))



Results
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Summary of contributions

We have
– analyzed the nature of background knowledge and model it

on a knowledge graph
– formulated privacy inference and proved its #P-hardness
– designed a heuristic algorithm to approximate it
– done simulations on real world datasets to show the

effectiveness of our algorithm



Thank you!


