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Prlvacy leak Is real! @DALLAS

AOL's disturbing glimpse into users' lives

Release of three-month search histories of about 650,000 users provides rare glimpse into their private lives.

= THEWALLSTREET JOURML @ Uber accidentally leaks personal data
: for hundreds of drivers

by Rich McCormick | Oct 14, 2015, 2:37am EDT

Chinese Online Travel Company

Ctrip Hacked C+ owe | e i e
LINKEDIN
U.S.-listed company'’s service disrupted after attack by -

‘unidentified sources’ '
T I
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Background knowledge
(Prior knowledge)

0 [ ]
.

The attacker can use background knowledge to infer
users’ sensitive information. E.g.

— Higher education => higher salary

— Colleagues=> same company

— Common hobbies => friends
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Previous privacy attacks Jipous

» Relational data —

— Data publishing 1y ’i

— Statistical query ~ g —
e Graph data 2@ pp

— De-anonymization ®®®

— Privacy learning D TR

e QOther data forms

— Spatio-temporal data, genome data, multimedia data
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Our goal N

To model the privacy inference attack and
reveal 1ts essence from a general view

(differs from most of previous work)
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NS SR
Challenges Apouiss

* Privacy is difficult to define and privacy leakage is
hard to quantify

* It 1s challenging to apply one single model to various
data forms

* Privacy inference 1s hard to model because there are a
large diversity of attack techniques
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Overview of the solution g

* Model the attacker’s knowledge by a
knowledge graph

 Abstract four base cases of privacy
inference

« Formulate privacy inference and prove
the hardness

* Design approximation algorithm which
reflects network evolution

|
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Knowledge graph Apuias

A heterogeneous graph of all kinds of entities and their
relations related to a specific domain or topic

— E.g. Freebase, Wikidata, Dbpedia, YAGO, NELL, Google’s
Knowledge Graph, Facebook’s Entities Graph



Our knowledge graph
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Employee-employer Employee-employer

olleague———
Colleague

Son-father

e

Frlend

Frien? Profession

Birth place

Gender

Belong to

Birth place Average salary Education

w

Each edge is associated with a probability, indicating the attacker’s confidence




Privacy inference base cases ipou.ss

o828 2

* Triangle inference
— A common neighbor \‘ \‘
(a) (b)
/Q / P
For Fig (a), we have (C) (d)

Pr(euluz) = Pr(eula) Pr(euza) Pr(eulu2 |eu1ar euza)

Inference probability



Multiple common neighbors g

To infer the relation between s and ¢
e Multiple base cases are combined altogether if they have

multiple common neighbors
 Inference probability Pr(eg:| Ny ) is computed by aggregation
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Assumption about triangle
inference VIPDALLAS

e To infer an unknown edge e;:

— If's, t have common neighbor(s), then eg; exists with a
probability (the inference probability);

— If there 1s no path connecting s, t, then e must not exists;

— If s, t do not have a common neighbor but there 1s a path
connecting them, the status of eg; 1s TBD.



Privacy inference A

* Is the problem of computing p(e,;), the probability
that an unknown edge e, exists.

Definition 2 (Privacy inference): Given a knowledge graph
G = (U U A,E, P), privacy inference is the problem of
computing p(e; ;) for any unknown edge e;; € E where s € U
and t € U U A, given the inference probabilities P(eg; | Ng;),
VNs: C U U A\{s,t}. We denote this problem as PI(G, s, t).



#P-hardness Apouiiss

The #P-hard “s-t reliability” problem can be reduced to our
problem.

Please see detailed proof in our paper.
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Al gorl thm {@DALLAS

A 1terative algorithm based on Monte Carlo
simulation

Generate conjecture graph G, from
knowledge graph G.

Flip a coin for each to
decide whether to add an edge.

Stop 1f e, 1s inferred or no more edges
can be added; redo Step 2 otherwise.




An example
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Simulations Apoarias

Datasets

— Relational: Adult
— Social network: Pokec

Knowledge graph construction

— Edge probabilities are synthetic: uniform, Gaussian

Inference probabilities are set by statistics

Metric

— confidence gain
Ap(est) = (ese) (D' (est) — po(est))



Results
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Summary of contributions

We have

— analyzed the nature of background knowledge and model it
on a knowledge graph

— formulated privacy inference and proved its #P-hardness
— designed a heuristic algorithm to approximate it

— done simulations on real world datasets to show the
effectiveness of our algorithm



Thank you!



