

Privacy Inference on Knowledge Graphs: Hardness and Approximation

Jianwei Qian, Shaojie Tang, Huiqi Liu, Taeho Jung, Xiang-Yang Li

Illinois Tech, UT Dallas, USTC

Outline

Privacy leak is real!

THE WALL STREET JOURNAL

 \equiv

AOL's disturbing glimpse into users' lives

Q

Release of three-month search histories of about 650,000 users provides rare glimpse into their private lives.

Privacy inference

- users' sensitive information. E.g.
 - Higher education => higher salary
 - Colleagues=> same company
 - Common hobbies => friends

Previous privacy attacks

- Relational data
 - Data publishing
 - Statistical query
- Graph data
 - De-anonymization
 - Privacy learning

- Other data forms
 - Spatio-temporal data, genome data, multimedia data

Outline

Our goal

To model the privacy inference attack and reveal its essence from a general view

(differs from most of previous work)

- Privacy is difficult to define and privacy leakage is hard to quantify
- It is challenging to apply one single model to various data forms
- Privacy inference is hard to model because there are a large diversity of attack techniques

2

3

4

- Abstract four base cases of privacy inference
- Formulate privacy inference and prove the hardness
- Design approximation algorithm which reflects network evolution

Knowledge graph

A heterogeneous graph of all kinds of entities and their relations related to a specific domain or topic

 E.g. Freebase, Wikidata, Dbpedia, YAGO, NELL, Google's Knowledge Graph, Facebook's Entities Graph

Our knowledge graph

Each edge is associated with a probability, indicating the attacker's confidence

Privacy inference base cases

Triangle inference

 A common neighbor

For Fig (a), we have

 $\Pr(e_{u_1u_2}) = \Pr(e_{u_1a}) \Pr(e_{u_2a}) \Pr(e_{u_1u_2} | e_{u_1a}, e_{u_2a})$

Inference probability

Multiple common neighbors

To infer the relation between *s* and *t*

- Multiple base cases are combined altogether if they have multiple common neighbors
- Inference probability $Pr(e_{st}|N_{st})$ is computed by aggregation

Assumption about triangle inference

- To infer an unknown edge e_{st} :
 - If s, t have common neighbor(s), then e_{st} exists with a probability (the inference probability);
 - If there is no path connecting s, t, then e_{st} must not exists;
 - If s, t do not have a common neighbor but there is a path connecting them, the status of e_{st} is TBD.

Privacy inference

• Is the problem of computing $p(e_{st})$, the probability that an unknown edge e_{st} exists.

Definition 2 (Privacy inference): Given a knowledge graph $G = (U \cup A, E, P)$, privacy inference is the problem of computing $p(e_{s,t})$ for any unknown edge $e_{st} \in E$ where $s \in U$ and $t \in U \cup A$, given the inference probabilities $P(e_{st} | N_{st})$, $\forall N_{st} \subseteq U \cup A \setminus \{s, t\}$. We denote this problem as PI(G, s, t).

The #P-hard "s-t reliability" problem can be reduced to our problem.

Please see detailed proof in our paper.

Outline

Algorithm

• A iterative algorithm based on Monte Carlo simulation

Generate conjecture graph G_0 from knowledge graph G.

Flip a coin for each candidate pair to decide whether to add an edge.

Stop if e_{st} is inferred or no more edges can be added; redo Step 2 otherwise.

An example

Simulations

- Datasets
 - Relational: Adult
 - Social network: Pokec
- Knowledge graph construction
 - Edge probabilities are synthetic: uniform, Gaussian
- Inference probabilities are set by statistics
- Metric
 - confidence gain

$$\Delta p(e_{st}) = I(e_{st})(p'(e_{st}) - p_0(e_{st}))$$

Results

Outline

We have

- analyzed the nature of background knowledge and model it on a knowledge graph
- formulated privacy inference and proved its #P-hardness
- designed a heuristic algorithm to approximate it
- done simulations on real world datasets to show the effectiveness of our algorithm

Thank you!