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Abstract—The rapid information propagation facilitates our
work and life without precedent in history, but it has tremen-
dously exaggerated the risk and consequences of privacy invasion.
Today’s attackers are becoming more and more powerful in
gathering personal information from many sources and mining
these data to further uncover users’ privacy. A great number
of previous works have shown that, with adequate background
knowledge, attackers are even able to infer sensitive information
that is not revealed to anyone malicious before. In this paper,
we model the attacker’s knowledge using a knowledge graph
and formally define the privacy inference problem. We show its
#P-hardness and design an approximation algorithm to perform
privacy inference in an iterative fashion, which also reflects
real-life network evolution. The simulations on two data sets
demonstrate the feasibility and efficacy of privacy inference using
knowledge graphs.

I. INTRODUCTION

Today’s all-pervasive technological innovations and rapid

information propagation have been unprecedentedly bettering

our life in all aspects. However, people’s personal data have

been collected, analyzed, shared and released, which has raised

much concern and resistance from the public [9]. Privacy as

one of the most primary needs of human beings, guarantees

our freedom of expression and lifestyles and the ease of

worries about being watched, judged, or harmed. Nevertheless,

privacy breach is real and serious, such as the successful de-

anonymization of the released AOL search logs in 2006 [1] and

the Netflix Prize data set in 2007 [20], and the leak of Ctrip

user payment logs in 2014 [34]. These famous leak incidents

are the tip of the iceberg; considerable privacy invasions are

barely known to the public [2], for example the ongoing

customer information selling [9].

This paper concentrates on privacy inference, a main type

of privacy invasion. It refers to the process of inferring new in-

formation about users given that the attacker already possesses

some background knowledge. The background knowledge can

be gathered from multiple sources such as common sense, real

life observations, demographic statistics, and shared or pub-

licly released data sets. We take the gigantic and fast-growing

technology companies Facebook and Google as two examples.

Facebook’s friend recommendation system predicts potential

connections based on the “proximity” of users such as ge-

ographic location, common hobbies and common neighbors

[4]. Google provides us with smart and convenient services

but meanwhile large quantities of personal data have been

recorded, including locations and mobility traces, calendar

schedules, emails, and cloud documents. The rich personal in-

formation has been analyzed for inferring users’ demographic

categories, interest and hobbies, and even itineraries to come,

some of which might be thought as private by the target

individuals. Both Facebook and Google were once charged

by Federal Trade Commission due to privacy issues [9].

The goal of this paper is to model and formulate the

attacker’s prior knowledge and the process of privacy inference

attack from a general view. Hopefully, it would reveal the

essence of privacy inference to the public and enlighten

data protectors to take the appropriate measures for privacy

preservation. To this end, we need to address three challenges.

First, privacy itself is comprehensive and difficult to define

and privacy leakage is hard to quantify. Various personal

information can be private, including many attributes (such as

disease, marital status and annual salary) and interconnections

between users (e.g. affairs and underground organizations).

Second, it is challenging to apply one single model to all the

data forms since the data being attacked can be heterogeneous

and arbitrary, such as relational data [18], social network data

[21], spatio-temporal data [31], genome data [22] and so on.

Third, the privacy inference process is hard to model because

there are a large diversity of techniques for it, e.g. homogeneity

attack [18], minimality attack [35], and structure-based de-

anonymization attacks [21].

Privacy has always been a heated research topic in the liter-

ature. Some works demonstrate a variety of attack techniques

for relational data in the data publishing scenario [6], [17]

or the interactive statistical query scenario [7], [8]. Others

propose plenty of powerful de-anonymization and privacy

learning methods on social network data [11], [21]. Our work

differs from much of the related work in that it abstracts the

process of privacy inference in a general fashion.

In this paper, we model the attacker’s knowledge using a

knowledge graph (in Section II-A) and give four base cases

of privacy inference on this model (in Section II-B). We

also formally define the privacy inference problem (in Section

III-A) and prove its #P-hardness (in Section III-B).

Generally, our contributions can be summarized as follows.

• We present a detailed analysis of the nature of prior

knowledge and privacy inference and model them with

the knowledge graph model (in Section II).
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• We formulate the privacy inference process and prove

that it is a #P-hard problem (in Section III), and propose

a heuristic method to estimate the inference outcome (in

Section IV).

• We implement our privacy inference algorithm and con-

duct simulations on real world data sets which verifies

the effectiveness of the algorithm (in Section V).

II. PRELIMINARIES

A. Background Knowledge & Knowledge Graph

In reality, privacy inference attack is usually performed

by an attacker who has possession of some background

knowledge [8], [18]. It can be gathered from multiple sources

including common sense, statistical data, personal data, and

released data sets. The rich and sophisticated data gathered by

the attacker are merged and stored in a knowledge graph.

A knowledge graph is a heterogeneous graph of all kinds of

entities and their relations related to a specific domain or topic

[12]. The currently most famous knowledge graphs include

Freebase, Google’s Knowledge Graph, and Facebook’s Entities

Graph. In this paper, we model knowledge graph as a directed

graph in which each node represents an entity, each directed

edge represents a relation between two entities. Moreover, each

edge has a relation type indicating the specific relationship,

and a probability (referred to as confidence score) indicating

the attacker’s confidence on the relation. Therefore, each edge

in the knowledge graph represents a piece of knowledge of

the attacker. The confidence score is either 1 or 0 for exact

knowledge, and it is 0.5 for unknown edges. Since all the

unknown edges are also added to the knowledge graph, it is

always a complete graph. Hereinafter, we denote a knowledge

graph as G = (V,E, P ) where V = U ∪ A, U is the

user node set, A is the attribute node set, E is the set of

relations between nodes, and P is the set of confidence scores

on the relations in E. We denote an edge as a quadruplet

e = (s, r, o, p), where s, o ∈ V , r ∈ E, p ∈ P , meaning

that the attacker believes there is a relation r connecting from

the subject s to the object o with the probability of p. The

confidence score/probability of an edge e is denoted as p(e).
Multiple edges are allowed considering that two entities could

be connected through multiple ways. For example, two persons

are both coworkers and friends, and a person’s location and

hometown are the same place.

There are three types of edges/relations in the knowledge

graph. User-to-user (U-U) relations represent relations be-

tween users. They could be uni-directed (star-fan, father-

son, employer-employee) or bi-directed (friends, colleagues,

classmates, couples). We denoted a U-U relation as eu1u2
,

u1, u2 ∈ U . Attribute-to-attribute (A-A) relations model the

correlations between attributes. They are directed indicating

that one attribute is dependent on another. Bayesian network

can also be used to model the dependence of attributes.

We denoted an A-A relation as ea1a2
, a1, a2 ∈ A. User-

to-attribute (U-A) relations stand for users’ attributes, e.g.

(Bob, has occupation of, technician, 0.9). They can be

treated as undirected since there is no ambiguity. We denoted

a U-A relation as eua, u ∈ U , a ∈ A. Thus, we have

E = EUU ∪ EUA ∪ EAA. There are mass of research works

on knowledge graph construction [23], [24] and refinement

[25], [30]. Thus in this paper, we assume that the attacker

has already constructed a knowledge graph using her prior

knowledge.

B. Base Cases of Privacy Inference

Privacy inference (or more accurately knowledge inference)

refers to the process of inferring new relations between a user

and an attribute or another user in the knowledge graph and

calculating the probabilities of them being true. There are four

basic types of privacy inference as follows.

A A

A1 A2

(a) (b)

(c) (d)

Fig. 1: Four base cases of privacy inference (triangle

inference): ‘A’ stands for an attribute. Each triangle inference

consists of two known edges (blue arrows) and one unknown

edge (dotted purple arrow) to be inferred. The inference is

based on common neighbors (attributes or users).

Case a [U-A + U-A → U-U], which means inferring a

U-U relation with two U-A relations (similarly hereinafter).

As shown in Fig. 1(a), the attacker can infer the relationship

between two persons according to their common attributes.

For example, working at the same company implies that they

are colleagues, and running for the US president implies that

they are opponents. Sometimes the inference is not absolutely

correct, e.g. people sharing the same home address are not

necessarily families. There is a probability in the correctness

of the inference, referred to as inference probability.

Case b [U-U + U-A → U-A]: Fig. 1(b) shows that the

attacker can infer whether a user possesses a specific attribute

given that he is related to another person who has this attribute.

As a simple example, we can infer that Tom also plays for a

baseball team given that his teammate Bob plays for that team.

Case c [U-U + U-U → U-U]: As depicted in Fig. 1(c), the

attacker can infer the relation between two persons who are

both connected to a third person. For instance, two parents of

the same kid are very likely to be spouses. Another example is

that two persons sharing the same friend could also be friends.

Case d [U-A + A-A → U-A]: Fig. 1(d) indicates that

the attacker can infer an attribute of a person based on its

dependency on another attribute, e.g. education level has a

major influence on the amount of salary a person earns.

We need to combine multiple base cases together if there

are multiple common neighbors. Specifically, multiple cases of
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Case a and Case c (if there are) are combined to infer a U-U

relation, and multiple cases of Case b and Case d (if there are)

are combined to infer a U-A relation (We refer either of them

as a triangle inference). The inference probability is up to the

number of common neighbors and the types of the relations

and the attributes involved. Suppose the target unknown edge

is est, and s, t have a set Nst of common neighbors exactly,

where Nst ⊆ V \{s, t}. The inference probability denoted as

Pr(est | Nst) is the probability that the relation est exists given

the condition that s, t have all and only the nodes in Nst as

their common neighbors. We have the following assumption

about how the attacker makes inference.

Assumption 1: To infer an unknown edge est, there are three

cases. 1) If s, t have common neighbor(s), then est exists with

a probability (the inference probability); 2) If there is no path

connecting s, t, then est must not exists because there is no

evidence indicating it at all; 3) If s, t do not have a common

neighbor but there is a path connecting them, the status of est
is TBD because the possibility depends on the path itself.

It is worth mentioning that this assumption also reflects

how the real network grows/evolves. For example, two persons

are likely to establish friendship if they share some common

friends, and a woman could develop a new hobby that her

husband likes. Two entities could potentially build a relation

if they are indirectly connected by some intermediaries.

We assume that the attacker has already obtained all the

necessary inference probabilities by some means, e.g. by data

mining (how she knows or estimates them is out of the scope

of this paper). Most of complex privacy inference types can

be easily transformed or decomposed into the base cases, so

we assume that the attacker only performs triangle inference.

III. PROBLEM FORMULATION AND ANALYSIS

A. Privacy Inference Definition

Definition 1 (Privacy inference): Given a knowledge graph

G = (V,E, P ), privacy inference is the problem of computing

p(es,t) for any uncertain edge est ∈ E where s ∈ U and

t ∈ V , given the inference probabilities P (est | Nst), ∀Nst ⊆
V \{s, t}. We denote this problem as PI(G, s, t).

Here, the attacker aims to infer a specific kind of informa-

tion about a target user s, such as a secret connection with

somebody t ∈ U or a private attribute t ∈ A. We assume that

privacy inference is limited to a single relation. The attacker

can conduct multiple privacy inference steps if she wants to

infer more than one relations.

To analyze the problem, we regard G as a random graph in

which each edge e is independently retained with a probability

of its confidence score p(e) or removed with a probability of

1−p(e). The probability simulates the randomness of success

and failure of the event (i.e. the existence of the relation) in

real life. We flip a biased coin for each edge e in G except

est to determine whether it is retained or removed with a

probabilities of p(e) and 1 − p(e) respectively, and mark est
as TBD, so we obtain a sample graph G0, which is referred to

as a conjecture graph. Take triangle inference as an example,

which consists of a target edge est and some edges connecting

v0

v1

v2 vi-1

vi

vi+1

s t

  

Fig. 2: A special case of inferring the relation est

from s, t to their common neighbors. If we flip a biased coin

at each known edge to remove the edge with a probability of

1 − p(e), we obtain a conjecture graph G0. In this case, if

s, t are still connected (via at least a common neighbor) in

G0, then the edge est exists in this conjecture graph with an

inference probability.

B. Hardness Proof

For clarification, we first study the special case of privacy

inference where all the inference probabilities are set to one.

This case is similar to the s-t reliability problem (a.k.a. two-

terminal network reliability), which is a classic reliability

problem. Given an undirected graph G in which each edge fails

independently with a given probability, s-t reliability aims to

determine the probability that two nodes s, t ∈ E(G) remains

connected after edge failures. We denote this as REL(G, s, t).
Its hardness has been proved in [5], [27].

Theorem 1: REL(G, s, t) is #P-hard.

We will transform the special case to s-t reliability and show

its hardness.

Theorem 2: Let G be a knowledge graph, for the special

case, PI(G, s, t) is equivalent to REL(G, s, t).
The proof of this Theorem is given in Appendix A. Now we

conclude the hardness of privacy inference as follows.

Theorem 3: Privacy inference PI(G, s, t) is #P-hard.

Proof: According to Theorems 2 and 1, the special case

of privacy inference is #P-hard and so is privacy inference.

IV. ALGORITHMS

For the special case, we can obtain the probability that

est exists by solving the s-t reliability problem via Monte

Carlo simulation. Monte Carlo methods are commonly used

to approximate the expected value of some random variable

that is very hard to compute exactly. They approximate the

expected value by taking the empirical mean (sample mean)

of independent samples of the variable We flip a biased coin

at each edge of G to decide whether to retain or remove

the edge, finally get a sample graph G0, and then check the

connectedness of s, t in G0. If so, we say this sample succeeds;

otherwise, it fails. Suppose after sampling m times, there are

X samples that succeed, the success ratio p̂ = X/m can be

used as an estimate of the probability that s, t are connected

and thus the p(est).
In a general case, inference probabilities are not necessarily

one, so we cannot simply transform it to a reliability problem.

We design an iterative algorithm instead to approximate it

which is also based on Monte Carlo simulation. In each

sample, edge addition will be performed on the knowledge
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Fig. 3: A general case of inferring the relation est: The at-

tacker first samples a conjecture graph G0 and then iteratively

inferring new edges by triangle inference. The iteration ends

in two rounds when est appears in G2.

graph for multiple stages, which simulates how real world

connections grow gradually. Since the common neighbor sets

of node pairs would change after new edges are added, we

distinguish them and use N i
v,w to denote the set of common

neighbors of v, w we have when the i-th stage is finished.

Stage 0: Given a knowledge graph G and a target unknown

relation est, we generate a conjecture graph G0 by flipping

coins. Then we check if there is a retained path connecting

s, t. If not, est must not exist by Assumption 1 so we can end

testing this sample now. Otherwise, the iteration keeps going

as follows.

Stage 1: A pair of nodes v, w in G0 is referred to as a

candidate pair, if they are unconnected, they share a set N0
v,w

of common neighbors, and at least one of them is a user

node. (A-A relations are considered to be constant, they do

not evolve, and the triangle inference rules do not apply to

them, so pairs of non-adjacent attribute nodes are not treated as

candidates and will not be connected later.) For each candidate

pair, we flip a biased coin so that we add a new edge evw
with a probability of the inference probability Pr(evw | N0

vw),
which reflects network evolution. (The influence of a newly

added edge on common neighbor set will be handled in the

next stage.) Then we update the common neighbor sets and

obtain an updated graph G1 with some new edges, which is

the end of the first stage of edge addition.

Stage i: For each candidate pair in Gi−1, there are three

cases. 1) If v, w did not gain new common neighbor(s) in

the i − 1-th stage, we leave them alone because the coin

has been flipped already. 2) If they did not have a common

neighbor after stage i − 2 but now have a set of them

N i−1
v,w , we flip a biased coin to add the new edge evw with

a probability of Pr(evw | N i−1
vw ). 3) If v, w already shared

common neighbor(s) after stage i − 2 and they gained more

after stage i− 1, we need to re-flip a coin for evw and cancel

the effect caused by the previous failed coin flip(s) for it. We

calculate the probability of the coin re-flip p′ considering that

previous coin flip(s) plus the re-flip should achieve the same

effect as a one-time flip, so we have

(1− Pr(evw | N i−2
vw ))(1− p′) = 1− Pr(evw | N i−1

vw ), (1)

p′ =
Pr(evw | N i−1

vw )− Pr(evw | N i−2
vw )

1− Pr(evw | N i−2
vw )

. (2)

When all the candidate pairs are taken care of, we update the

common neighbor sets and obtain an updated graph Gi.

The iteration on one sample ends when either the target edge

est is inferred (the sample succeeds), or no more edges can

be added (the sample fails). We sample G0 and perform the

multi-stage edge addition for n times. If there are X samples

that succeed, the success ratio p̂ = X/n is an estimation of

p(est), the probability that est exists.

Complexity: Let n be sample size, l be the stage number,

the time complexity is O(n|V |3l). In the worst case where

only one edge is added in every stage and est is the last one

added, we have l = O(|E|) = O(|V |2). Thus, a very loose

upper bound of the time complexity is O(n|V |5).

Error bound: The successful sample number X is a

random variable following the binomial distribution, X ∼
B(m, p) where p is short for p(est). Therefore, we have

Pr(|p̂− p| ≤ ǫ) =Pr(m(p− ǫ) ≤ X ≤ m(p+ ǫ))

=

⌊m(p+ǫ)⌋
∑

i=⌈m(p−ǫ)⌉

(

m

i

)

pi(1− p)m−i (3)

V. EXPERIMENT EVALUATIONS

A. Methodology

Data sets: Our simulations use two data sets: UCI Adult

[14] and SNAP Pokec social network [33]. Adult is a tabular

census data set containing rich information of 30162 individ-

uals. We select 6 attributes: sex, age, race, education, work-

class, salary-class. Pokec is a social network data sets from

which we select 5 attributes: sex, age, region, height, weight.

Knowledge graph construction: For Adult, we build a

knowledge graph for each person with his/her attributes (U-

A relations). For Pokec, we randomly select an ego network

of 60 users, extract all the involved U-U and U-A relations,

and then build a single knowledge graph for these users. A-A

relations are calculated by statistics of the data, e.g. the ratio

of women who have a doctorate degree. All of them are added

to the knowledge graphs.

Probability generation: As stated above, the confidence

scores of A-A relations are calculated by statistics. The setting

of confidence score of a U-U or U-A relation depends on

whether the relation is contained in the data. If so, it is a true

relation and we set a high probability for it; for a false relation,

we set a low probability. We adopt the following methods to

generate confidence scores.

1) 1&0: set to 1 or 0 for true and false relations respectively;

2) Uni: generated by the uniform distribution, e.g. U(0.9, 1)
and U(0, 0.1) for true and false relations respectively

(denoted as Uni0.9);
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Fig. 4: Confidence gain on Adult and Pokec
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Fig. 5: CPU time for privacy inference on Pokec

3) Gau: generated by the Gaussian distribution, e.g.

N(0.9, 0.001) and N(0.1, 0.001) (denoted as Gau0.9)

respectively.

The variances of Gaussian distribution are set by three-sigma

rule so that the generated probabilities are within [0,1] at

most time (truncated if not). The number of all the inference

probabilities Pr(evw | Nvw) is
(

|V |
2

)

· 2|V |−2. For simpli-

fication, we only generate inference probabilities of single

common neighbor and aggregate them to calculate those of

many common neighbors as follows.

Pr(evw | Nvw) =
1

|N∗
vw|

∑

i∈Nvw

Pr(evw | {i}). (4)

Here N∗
vw is the set of potential common neighbors of v and

w. The inference probabilities of single common neighbor is

generated as follows. For Case d, the inference probabilities

are simply set to one because the randomness lies in the

attribute dependency. For other three base cases, we generate

inference probabilities by statistics.

After building a knowledge graph, we randomly select

a target edge and set it to be unknown, then estimate its

probability by our algorithm with the sample size set to

n = 10000. To measure the privacy inference result, we define

confidence gain as ∆p(eij) = I(eij)(p
′(eij)− p(eij)), where

eij is the target edge, p is the initial probability, p′ is the

updated probability after privacy inference, and I(eij) is a flag

indicating whether eij is true in the ground truth. A positive

confidence gain would validate the efficacy of our algorithm.

B. Evaluation on Privacy Inference

Adult: We present the results of privacy inference on the

marital status and work-class for each user. Fig. 4(a)(b) dis-

plays the confidence gain of privacy inference on true relations,

i.e. edges that do exist in reality. It is shown that there is

a positive confidence gain for at least 60% of the attribute

inference tasks in Adult. For some cases like inferring if a

person is widowed or if a person works without pay, the ratio

of a positive confidence gain reaches 90%. The results are

similar for inferring false relations. The run time is less than

1s since the knowledge graph has a small size for each user.

Pokec: We present the results for users’ region and weight

in Fig. 4(c)(d). Different distributions (Gaussian and uniform)

are used for generating edge probabilities. For region, at least

45% of the inference results achieve a positive confidence

gain, while the ratio is less than 30% for weight. A possible

explanation is that region has more dependence on other

knowledge than weight does. For example, people who are

friends are more likely to be in the same region. Average CPU

time of one privacy inference task is displayed in Fig. 5, which

shows that the computation overhead is acceptable.

Discussion: The results shown above demonstrate the fea-

sibility of our model and algorithm. We do not compare with

previous proposed algorithms since there is very few related

works. The accuracy of privacy inference is greatly up to the

accuracy of estimating inference probabilities. As future work,

we will utilize deep learning to estimate these probabilities

more accurately so as to improve the performance.

VI. RELATED WORK

Privacy attack and protection in relational data has been the

focus of research for more than ten years. The most well-

known works are k-anonymity [32], l-diversity [18], and t-
closeness [16]. Recent work has pointed out the necessity

of taking the attacker’s prior knowledge into account when

estimating the risk of privacy disclosure, e.g. [6], [17]. Mostly,

these models are limited to the relational data publishing

scenario. To avoid the privacy issues in data publishing, some

data owners choose not to release the data but allow restricted

statistical queries over it [7], [8]. Dwork [8] has shown that

no methods can eliminate the possibility of privacy disclosure

in statistical query considering that the attacker may have

background knowledge.

Privacy inference on network data is also well-studied in the

literature, most of which focuses on de-anonymization [21],

[31]. They usually consist of two phases: seed identification

and mapping propagation. Specifically, the attacker first iden-

tifies a few outstanding users as seeds and then propagates the

mapping between users and nodes based on their similarities in

profiles and structural characteristics. Other work is focused on

inferring new personal information with existing network data.

For example, Heatherly et al. [11] explored how the attacker

uses classifiers to learn undisclosed private information of
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social network users. The most related work by Qian et al.

[28] used knowledge graphs to model privacy leakage in social

network data publishing. They proposed a two-stage attack:

de-anonymization and privacy inference, but their analysis of

the latter stage is limited. Our work is different in that we

formularize privacy inference, show its hardness, and design

heuristic algorithms for it.

VII. CONCLUSION

This paper presents a general model of privacy inference on

knowledge graphs. We first model the attacker’s background

knowledge on knowledge graphs and analyze the base cases

of privacy inference. We formally define the problem of

privacy inference and prove its #P-hardness. Then we design

a heuristic algorithm to estimate it and perform simulations

on two real data sets. The experiment results validate the

feasibility and effectiveness of our model and algorithm in

one sense.
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APPENDIX A

PROOF OF THEOREM 2

Proof: All the inference probabilities are one in the

special case, which means for any triangle inference, the

edge between two nodes exist iff. they have at least one

common neighbor. Given a knowledge graph G, suppose the

attacker aims to infer the relation est. We randomly generate a

conjecture graph G0. Now we prove that est exists in the G0

iff. the event succeeds that there is at least one path connecting

s, t in G0 (we denoted this event as Con(G0, s, t)).

Necessity: If Con(G0, s, t) fails, there is no path connecting

s, t, which implies the non-existence of est by Assumption 1.

Sufficiency: If Con(G0, s, t) succeeds, suppose the shortest

path connecting s, t is s-v1-v2-· · · -vi-t, as depicted in Fig. 2.

Let v0, vi+1 be the alias of s, t respectively. By Assumption 1,

there is a common neighbor v1 for s and v2, so the edge esv2
exists with an inference probability which is one in the special

case. Thus esv2 can be added to G0 after applying a triangle

inference which simulates network evolution. Likewise, we

can infer esv3
given esv2 and ev2v3 . We perform triangle

inference iteratively to infer esvj+1
given esvj and evjvj+1

,

j = 1, 2, · · · , i. Finally it can be inferred that est exists.

Hence, that est exists in G0 is equivalent to Con(G0, s, t).
Therefore, the probability that est exists equals the probability

of the connectedness of s, t. In other words, PI(G, s, t) is

equivalent to REL(G, s, t).
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